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The steady-state moderately inertial jet flow of a viscoelastic liquid of the Oldroyd-B
type, emerging from a two-dimensional channel, is examined theoretically in this
study. Poiseuille flow conditions are assumed to prevail far upstream from the exit.
The problem is solved using the method of matched asymptotic expansions. The
small parameter involved in the expansions is the inverse Reynolds number. The
flow and stress fields are obtained as composite expansions by matching the flow in
the boundary-layer region near the free surface and the flow in the core region. The
influence of elasticity on the shape of the free surface, the profiles of velocity and
stress and the interplay between inertia and elasticity are explored. It is found that
even for a jet with moderate inertia, elastic effects play a significant role, especially
close to the channel exit near the free surface. It is also found that similar to the
Newtonian case, the viscoelastic jet contracts downstream from the channel exit.
However, in contrast to Newtonian jet, a viscoelastic jet is preceded by a flat region
very close to the channel exit at which elastic and inertial effects are in balance. The
extent of this region increases with elasticity. A momentum integral balance is applied
to validate the theory and obtain the jet contraction ratio explicitly in terms of the
Deborah number, viscosity ratio and Reynolds number.

1. Introduction
The interplay between inertia and elasticity is examined in this study for the two-

dimensional steady flow of an incompressible viscoelastic fluid exiting a channel (see
figure 1). The emphasis is on the flow near exit. Inertia is assumed to remain relatively
important, allowing asymptotic development in terms of the inverse Reynolds number.
Similar to Newtonian jet (Tillett 1968), the flow is supposed to have the basic Poiseuille
profile to lowest order and is modified when the fluid leaves the channel in the form
of a jet. When the fluid detaches itself from the wall of the channel, the removal of
the wall stress causes a boundary layer to form in a region near the free surface; in
this region the parabolic velocity profile adjusts itself so as to satisfy the condition
of zero traction at the free surface. In the case of an inviscid liquid, this condition
would not be imposed, and all the conditions of the problem would be satisfied by
postulating that the parabolic profile continues unchanged in the jet region. However,
no uniqueness theorem exists for this inviscid problem, and it is conceivable that
other solutions might exist; nevertheless, it is assumed in this paper that Poiseuille
flow everywhere is the proper inviscid limit (see Tillett 1968). With this assumption,
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the flow in the core of the jet is, to lowest order, not affected by the flow in the
boundary-layer region near the free surface, although the boundary layer is expected
to induce perturbations to the basic Poiseuille flow, when higher-order terms are
included, for the flow both upstream and downstream from the channel exit.

Liquid laminar jets have been extensively studied previously in the literature.
However, the focus has mainly been on Newtonian jet flow. In addition, in most
studies of Newtonian jets, due to the convective nonlinearities, limited studies can be
found, which take inertial effect into account. For high-inertial jet flow of Newtonian
fluids, Tillett (1968) used the method of matched asymptotic expansions for a planar
steady jet. He developed a classical boundary-layer analysis to find the flow at small
distances downstream of the jet. Similar to all boundary-layer analyses, where the
solution is not valid within a small distance from inception such as very near the
leading edge and stagnation point, Tillett’s analysis precludes the flow at the channel
exit. However, the distance in question is small, of the order of the (local) boundary-
layer thickness. Consequently, the boundary-layer approach turns out to be successful
in capturing the flow nature near inception. Miyake, Mukai & Iemoto (1979) carried
out an analysis similar to Tillett’s on a vertical jet of inviscid fluid taking into account
gravity effect. Philippe & Dumargue (1991) also applied an analysis similar to Tillett’s
for viscous axisymmetric vertical jets, emphasizing the interplay between gravity and
inertia effects on the free-surface shape and the velocity profile. A local similarity
transformation was carried out by Wilson (1985) for the axisymmetric viscous-gravity
jet for the boundary-layer-type flow close to the free surface.

Generally, non-Newtonian jets are more likely to remain laminar compared to
Newtonian jets (Rotem 1964; Cao et al. 2005; German & Khayat 2008). This
makes the assumption of laminar flow within a distance downstream more plausible.
The axisymmetric free laminar jet of an incompressible pseudoplastic fluid was
investigated by Rotem (1964). A boundary-layer approximation was used to find
the velocity profiles for different exponents in an inelastic fluid. Submerged planar
and axisymmetric jet flows of non-Newtonian power-law fluids at high Reynolds
number have been investigated by Stehr & Schneider (2000). They used the method
of matched asymptotic expansions and accounted for interaction between the jet flow
and the induced flow.

Regarding the jet flow of viscoelastic fluids, the focus has mainly been in the
literature on die swell. For instance Tieu & Joseph (1983) considered surface-
tension-driven flow, and Tran-Cong & Phan-Thien (1988) examined the creeping-flow
extrusion of a viscoelastic fluid from triangular and square dies. Of closer relevance
to the present problem, Liang, Oztekin & Neti (1999) carried out flow visualization
and measurement to describe the behaviour of steady viscoelastic jet issuing from
a capillary or an orifice under gravity. Their experiments revealed that depending
upon the elasticity level of the fluid, the jet width may increase, decrease or remain
unchanged downstream from the exit at least within a certain distance from the exit.
In this case, the interplay between gravity and elasticity dictates the jet behaviour.
Interestingly, one may expect similar or parallel observations upon examining the
interplay between inertia and elasticity as in the current study. Indeed, both gravity
and inertia tend to have a stabilizing effect (Cao, Khayat & Puskas 2005). Finally, the
breakup of viscoelastic jets has been theoretically analysed by Goldin et al. (1969),
Shummer & Thelen (1988) and Renardy (2002).

The numerical computation of viscoelastic fluid flows with differential constitutive
equations presents various difficulties, especially for free-surface flow. These difficulties
are usually due to the lack of convergence and stability of the complex numerical
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scheme handling nonlinearities of inertial, elastic and geometrical nature. In addition,
due to the hybrid type of the governing equations (elliptic and hyperbolic), geometrical
singularities such as re-entrant corner or die induce stress singularities and hence
numerical problems. Bérdaudo et al. (1998) examined the die-swell phenomenon
preceded by a confined convergent two-dimensional and axisymmetric geometries
for a viscoelastic fluid using the finite-element method. In their study, they neglected
inertia but claimed that it could be included without any difficulty. Therein, a summary
of computational studies on viscoelastic flows and the associated complexities can be
found.

The present study is restricted to flows with inertia dominating elastic and viscous
effects. The work is of fundamental importance given the significant qualitative role
that elasticity plays in this case. In general, inertia has been neglected in most
of the studies on viscoelastic jets. This can be quite reasonably justified, since in
most practical applications of polymeric liquids, inertia is effectively small. However,
there are still applications such as fibre spinning (Donnelly & Weinberger 1975),
film casting (Cao et al. 2005) and high-speed extrusions (Slattery & Lee 2000) in
which inertia plays a significant role. Shah & Pearson (1972) showed that inertia
plays a very important role in fibre spinning, as it enhances flow stability. Inertia
becomes particularly important in modern high-speed film casting (Cao et al. 2005).
Experiments on film casting and fibre spinning (Doufas & McHugh 2001; Seyfzadeh,
Harrison & Carlson 2005) also suggest that inertia has a significant effect on the
stability region of these processes. In a recent study by German & Khayat (2008), the
effects of inertia and elasticity were examined for the film casting of a Phan–Thien–
Tanner fluid. Linear stability analysis was carried out. It was shown that inertia has a
stabilizing effect on the film-casting flow. The reader is referred to German & Khayat
(2008) for further discussion.

Middleman & Gavis (1961) observed in their experiments that the viscoelastic
jet expands for low ejection velocities. The expansion reaches a maximum with
increasing flow rate. However, the expansion begins to weaken as the flow rate is
increased further, and the viscoelastic jet ultimately contracts when inertia becomes
significant. In their study, however, they used only a power-law model to represent
the fluid properties, which does not allow a direct quantitative comparison with the
results of the present study. A similar interplay between inertia and elasticity is also
responsible for the delayed die-swell phenomenon. Delayed swell appears to be caused
by some inertial mechanism related to the change in flow type from subcritical to
supercritical (Cloitre et al. 1998). More recently, Khayat & Kim (2006) examined the
flow of a viscoelastic thin jet emerging from an annulus. In this case, a boundary-layer
approach was used to approximate the flow throughout the jet thickness. Such an
approach cannot be used for the present problem, as no restriction is placed on its
thickness. The interplay between inertia and elasticity was also considered in other
flows of some relevance to the present study. Eggleton, Ferziger & Pulliam (1994)
examined the steady-state entry flow of an Oldroyd-B fluid in a planar channel
using perturbation analysis. They predicted entrance lengths shorter than those of a
Newtonian fluid at moderate Reynolds numbers.

In the present study, the role of elasticity in a moderately inertial jet flow and the
interplay between inertia and elasticity are investigated. The formulation and solution
procedure follow those of Tillett (1968). However, the solution is now found for the
boundary-layer-type equations derived for a viscoelastic Oldroyd-B fluid (Oldroyd
1950; Bird, Armstrong & Hassager 1987). The solution is developed in powers of ε,
where ε3 is the inverse Reynolds number, both in the ‘inner’ boundary-layer region
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and in the ‘outer’ core region. The two expansions are matched by the standard
procedure suggested by Van Dyke (1964). Special emphasis is placed on the effect
of elasticity of the liquid on the shape of the free surface and the profiles of the
velocity and stress components close to the exit. Good qualitative agreement is found
with the measurements and observations of Liang et al. (1999). The results are most
likely to be useful as reference for comparison with future experiment and numerical
simulation. Finally, and very importantly, in typical jet flow calculations, Poiseuille
conditions are assumed at inception. The present work provides the correct conditions
near exit, which are required to determine the jet structure further downstream.

2. Governing equations
The fluid is assumed to be an incompressible polymeric solution of density ρ,

relaxation time λ and viscosity μ. In this study, only fluids that can be reasonably
represented by a single relaxation time and constant viscosity are considered. The
polymeric solution is assumed to be composed of a Newtonian solvent of viscosity
μs and a polymeric solute of viscosity μp , such that the solution viscosity is given
by μ = μs + μp . Regardless of the nature of the fluid, the continuity and momentum
balance equations must hold. The conservation equations for an incompressible fluid
can be concisely written as

∇ · U = 0, (2.1)

ρ(UT + U · ∇U) = −∇P + ∇ · Σ, (2.2)

where U is the velocity vector; P is the pressure; T is the time; and ∇ is the gradient
operator. A subscript denotes partial differentiation. The stress tensor Σ comprises
a Newtonian component, corresponding to the Newtonian solvent, and a polymeric
component T corresponding to the solute. Thus,

Σ = μs(∇U + ∇U t ) + T , (2.3)

where t denotes matrix transposition. The constitutive equation for T is taken to
correspond to the Oldroyd-B fluid, which can be written as (Bird et al. 1987)

λ(T T + U · ∇T − T · ∇U − ∇U t · T ) + T = μp(∇U + ∇U t ). (2.4)

In the limit μs → 0, system (2.1)–(2.4) reduces to that corresponding to a Maxwell
fluid. In the limit μp → 0, the Navier–Stokes equations are recovered. The problem is
now examined in a Cartesian coordinate system using standard notations for velocity
and stress components.

Consider the flow of a viscoelastic jet emerging from a channel as schematically
depicted in figure 1 in the (X, Z)-plane. The X-axis is taken along the lower edge of
the channel, and the Z-axis is chosen in the transverse direction across the channel.
The channel exit coincides with X = 0. The flow is induced by a pressure gradient
inside the channel. It is convenient to introduce the stress components as Q ≡ Txx ,
R ≡ Tzz and S ≡ Txz = Tzx . The stream function and corresponding stress components
of the basic Poiseuille flow are given by

Ψ = A

(
Z2 − 2

3b
Z3

)
, (2.5a)

Q = 4λAS

(
1 − 2Z

b

)
= 8λμpA2

(
1 − 2Z

b

)2

, (2.5b)
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Figure 1. Schematic illustration of the planar jet flow, including the upstream and down-
stream regions from the channel exit, as well as the free surfaces. All notations are
dimensional.

R = 0, (2.5c)

S = 2μpA

(
1 − 2Z

b

)
, (2.5d)

where b is the width of the channel and A= 3Ū/b, with Ū being the average velocity
in the channel. Following Tillett (1968), a Reynolds number Re based on the channel
width is introduced. For a viscoelastic fluid, there are two additional non-dimensional
similarity parameters, namely the solvent-to-solute viscosity ratio Rv and the Deborah
number De. Explicitly written, these parameters take the following form:

Re =
Ab2

ν
, Rv =

μs

μp

, De = λA, (2.6)

where ν is the kinematic viscosity. The solute-to-solution viscosity ratio is introduced
as a = 1/(1 + Rv). In this problem, 1/Re is assumed to be the small, and both Rv and
De are assumed to be of order one. The Deborah number in (2.6) is introduced in
terms of shear rate and is more commonly referred to as the Weissenberg number in
the literature. A variable Y is conveniently introduced to denote the deviation from
the free surface, namely

Y = Z − Ξ (X, Re, De, Rv), (2.7)

where Z = Ξ (X, Re, De, Rv) is the equation of the lower free surface. Non-dimensional
variables are introduced by measuring lengths with respect to b, stream function with
respect to Ab2, pressure with respect to ρA2b2 and polymeric stress components with
respect to μA and are given by

X = bx, Z = bz, Ξ = bζ,

P = ρA2b2p, Ψ = Ab2ψ, (Q, S, R) = μA(q, s, r).

}
(2.8)

Now, (2.5a)–(2.5d) become

ψ0 = z2 − 2

3
z3, (2.9a)

r0 = 0, (2.9b)

s0 = aψ0zz = 2a(1 − 2z), (2.9c)

q0 = 2De s0ψ0zz = 8aDe(1 − 2z)2, (2.9d)
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and accordingly, the non-dimensional conservation of momentum and constitutive
equations for the laminar steady flow take the following form:

ψzψxz − ψxψzz = −px +
aRv

Re
(ψxxz + ψzzz) +

1

Re
(qx + sz), (2.10a)

−ψzψxx + ψxψxz = −pz − aRv

Re
(ψxxx + ψxzz) +

1

Re
(sx + rz), (2.10b)

De(ψzqx − ψxqz − 2qψxz − 2sψzz) + q = 2aψxz, (2.11a)

De(ψzrx − ψxrz + 2sψxx + 2rψxz) + r = −2aψxz, (2.11b)

De(ψzsx − ψxsz + qψxx − rψzz) + s = a(ψzz − ψxx). (2.11c)

For x > 0 the kinematic and dynamic boundary conditions at the free surface, z = ζ (x),
are

ψ = 0, (2.12a)

p +
1

Re
[aRv(2ψxz + ζ ′ψzz − ζ ′ψxx) + ζ ′s − r] = 0, (2.12b)

pζ ′ − 1

Re
[aRv(2ψxzζ

′ − ψzz + ψxx) + qζ ′ − s] = 0. (2.12c)

A prime denotes total differentiation. Note that surface tension effect is assumed
to be negligible. Philippe & Dumargue (1991) showed that even in the case of a
high-Reynolds-number cylindrical Newtonian jet with two radii of curvature, surface
tension effect is negligible for most ordinary liquids. Surface tension is expected to be
even less significant for polymeric liquids (see Khayat & Kim 2006).

Given the symmetry of the flow, the problem is examined over the range 0 � z � 1/2;
the flow for 1/2 � z � 1 can be obtained similarly. Inside the channel, the following
conditions must be satisfied:

ψ =
1

6
at z =

1

2
, (2.13a)

ψz = 0 at z = 0, (2.13b)

ψ → z2 − 2

3
z3 at x → −∞, (2.13c)

r → 0, s → 2a(1 − 2z), q → 8aDe(1 − 2z)2 as x → −∞. (2.13d)

The problem is now examined by considering separately the flow near the free surface
(inner region) and the flow in the core (outer) region. The composite flow is obtained
upon matching the solutions at the interface between the two regions (see figure 1).

3. The inner expansion
To examine the boundary-layer structure near the free surface, the scaling in the

transverse direction is changed by writing y = εη, where ε = Re−α and α is to be
determined. Anticipating that the height ζ of the free surface is of the same order of
magnitude as the boundary-layer thickness, one can write ζ (x) = εh(x) and henceforth
work with h. It is not necessary to assume that h(x) = O(1) as ε → 0; examination of
(3.2a) shows that the inner expansion developed in this section holds provided only
that h = o(ε−1), i.e. ζ tends to 0 with ε. In the matching process, in § 5, it will be
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shown that h = O(1). Making the change of independent variables{
x = ξ,

z = ε(η + h),
(3.1)

in (2.10a) and (2.10b), it is concluded that

ψηψξη − ψξψηη = −ε2(pξ − h′pη) + aRvε(
1
α

−1)ψηηη + aRvε(
1
α
+1)

×
(

ψξξη − h′′ψηη − 2h′ψξηη + h′2ψηηη +
1

aRv
sη

)
+ ε2+ 1

α (qξ − h′qη), (3.2a)

−ψηψξξ + ψξψξη + h′′ψ2
η + h′(ψηψξη − ψξψηη) = −pη + ε

1
α rη − aRvε(

1
α

−1)

× (ψξηη − h′ψηηη) − aRvε(
1
α
+1)

[(
∂

∂ξ
− h′ ∂

∂η

)3

ψ − 1

aRv
(sξ − h′sη)

]
. (3.2b)

Note that ξ and x are distinguished only in differentiation.
The aim is to find a solution of these equations in the form of an ‘inner expansion’

in ε. In order to match this to the outer Poiseuille flow, it is necessary to have ψ ∼ y2

as η → ∞ in the inner region, to lowest order in ε; so ψ must be of order ε2. In order
to determine the value of α, it is required to find the order of the polymeric stress
components in (3.2a) and (3.2b) first. The constitutive equations for the polymeric
stress components, (2.11a)–(2.11c), can be written explicitly in terms of inner variables
as

De(εuqξ − εh′uqη + wqη − 2εquξ + 2εh′quη − 2ruη) + εq = 2aε(uξ − h′uη), (3.3a)

De(εurξ − εh′urη + wrη − 2εswξ + 2εh′swη − 2rwη) + εr = 2a(wη), (3.3b)

De(εusξ − εh′usη + wsη − εqwξ + εh′qwη − ruη) + εs = a(uη + εwξ − εh′wη), (3.3c)

where the components u, the streamwise velocity, and w, the transverse velocity, are
now expressed in terms of the stream function as

u = ψz =
1

ε
ψη, (3.4a)

w = −ψx = −ψξ + h′ψη. (3.4b)

From (3.4a), it is obvious that u is of order ε. Considering the fact that u in the inner
region must match the velocity in the outer region, u =ψz = 2z−2z2, it is also inferred
that u must be of order ε inside the inner region. The order of w can be found using
the continuity equation when written in terms of inner variables, or

εuξ − εh′uη + wη = 0. (3.5)

Thus, w is of order ε2.
Now that the order of magnitudes of velocity components has been determined, it

can be simply deduced from (3.3a)–(3.3c) that q and s are of order one whereas r is of
order ε, in the inner region. It is not difficult to realize that both s and q are of order
one, since they need to match the stresses in the outer region. However, the order of r
is determined by inspecting (3.3b); it will be shown that r vanishes in the outer region.
In this case, a balance among the viscous, inertial and polymeric stress terms in (3.2a)
and (3.2b) is achieved upon taking α = 1/3. In this case, the momentum conservation
equations can be rewritten as
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ψηψξη − ψξψηη = −ε2(pξ − h′pη) + aRvε2ψηηη + aRvε4

×
(

ψξξη − h′′ψηη − 2h′ψξηη + h′2ψηηη +
1

aRv
sη

)
+ ε5(qξ − h′qη), (3.6a)

−ψηψξξ + ψξψξη + h′′ψ2
η + h′(ψηψξη − ψξψηη) = −pη + ε3rη − aRvε2

× (ψξηη − h′ψηηη) − aRvε4

[(
∂

∂ξ
− h′ ∂

∂η

)3

ψ − 1

aRv
(sξ − h′sη)

]
. (3.6b)

The boundary conditions on the free surface η =0 are, from (2.12a)–(2.12c),

ψ = 0, (3.7a)

ε(h′p + aRv ψηη) − ε3aRv

[(
∂

∂ξ
− h′ ∂

∂η

)2

ψ + 2h′(ψξη − h′ψηη)

]
+ ε4h′q + ε3s = 0,

(3.7b)

p + ε2aRv[2ψξη − h′ψηη] − ε4h′aRv

(
∂

∂ξ
− h′ ∂

∂η

)2

ψ + ε4h′s − ε3r = 0. (3.7c)

The inner expansion for ψ begins with a term in ε2. This is assumed until there is
evidence to the contrary. Thus, the expansion proceeds in powers of ε, so that

ψ(ξ, η) = ε2Ψ2(ξ, η) + ε3Ψ3(ξ, η) + . . . . (3.8)

Similarly, h and p are expanded as

h(ξ ) = ε−1ζ (ξ ) = h0(ξ ) + εh1(ξ ) + . . . , (3.9)

p(ξ, η) = P0(ξ, η) + εP1(ξ, η) + . . . . (3.10)

From (3.6b), (3.7c) and (3.10), it can be concluded that p is of order ε4. In order to
solve (3.6a), it is required to express the stress components in terms of the stream
function. This can be done by expanding each of the velocity and stress components
as regular expansions as follows:

u(ξ, η) = εU1(ξ, η) + ε2U2(ξ, η) + . . . , (3.11a)

w(ξ, η) = ε2W2(ξ, η) + ε3W3(ξ, η) + . . . , (3.11b)

q(ξ, η) = Q0(ξ, η) + εQ1(ξ, η) + . . . , (3.11c)

s(ξ, η) = S0(ξ, η) + εS1(ξ, η) + . . . , (3.11d)

r(ξ, η) = εR1(ξ, η) + ε2R2(ξ, η) + . . . . (3.11e)

In this case, U1 = Ψ2η, U2 = Ψ3η, W2 = −Ψ2ξ + h′
0Ψ2η and so on. Hence, the stress

components can be expressed to any order in terms of stream functions of different
orders. Thus, upon using (3.8), (3.9) and (3.11), (3.3) gives, to O(ε),

Q0 = 2aDeΨ 2
2ηη, (3.12a)

R0 = 0, (3.12b)

S0 = aΨ2ηη, (3.12c)

Q1 = 2a(Ψ2ξη − h′
0Ψ2ηη) − aDe[6DeΨ2ηηΨ2ηηξΨ2η (3.12d)

− 6DeΨ2ηηΨ2ηηηΨ2ξ − 4Ψ2ηηΨ3ηη],

R1 = 2a(−Ψ2ξη + h′
0Ψ2ηη), (3.12e)

S1 = aΨ3ηη − aDe
(
Ψ2ηΨ2ξηη − Ψ2ξΨ2ηηη + 2Ψ2ξηΨ2ηη − 2h′

0Ψ
2
2ηη

)
. (3.12f)
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Using (3.12), the momentum equation, (3.6a), to leading order, reads

Ψ2ηΨ2ξη − Ψ2ξΨ2ηη = Ψ2ηηη. (3.13)

Note that (3.6b) is not immediately needed because of the decoupling of the pressure.
The corresponding boundary conditions are obtained from (3.7a) and (3.7b), namely

Ψ2(ξ, 0) = Ψ2ηη(ξ, 0) = 0. (3.14)

To complete the problem for Ψ2, another boundary condition is required. This is the
matching condition, which will be obtained in § 5, namely

Ψ2(ξ, η) → η2 as η → ∞. (3.15)

It is observed that no elastic contribution appears to leading order. Equation (3.13)
and its boundary conditions, (3.14) and (3.15), are exactly the same as in the case of
a Newtonian fluid (Tillett 1968). A similarity solution for (3.13) was carried out by
Tillett (1968) for Ψ2, which is rewritten here as

Ψ2(ξ, η) = ξ 2/3f2(θ), (3.16)

where θ = ηξ−1/3 is the similarity variable. The equation for f2(θ) is, from (3.13),

f ′′′
2 +

2

3
f2f

′′
2 − 1

3
f ′2

2 = 0, (3.17)

and the boundary conditions are, from (3.14) and (3.15),

f2(0) = f ′′
2 (0) = 0, (3.18a)

f2(θ) ∼ θ2 as θ → ∞. (3.18b)

Equation (3.17) can be solved numerically. Also, for large θ , the solution has the
following asymptotic form (Tillett 1968):

f2 = (θ + c)2 + O

[
exp

(
−2

9
θ3

)]
, (3.19)

where c = 0.70798 from the numerical integration. To the next order in ε, (3.6a) gives

Ψ2ηΨ3ξη + Ψ3ηΨ2ξη − Ψ2ξΨ3ηη − Ψ2ηηΨ3ξ = Ψ3ηηη

+ aDe(Ψ2ηηΨ2ξηη − Ψ2ηΨ2ξηηη + Ψ2ξΨ2ηηηη − Ψ2ξηΨ2ηηη), (3.20)

subject to the boundary conditions from (3.7a) and (3.7b), namely

Ψ3(ξ, 0) = Ψ3ηη(ξ, 0) = 0. (3.21a)

The matching condition from § 5 is

Ψ3(ξ, η) ∼ −2

3
η3 as η → ∞, (3.21b)

which completes the problem for Ψ3. The (non-homogeneous) terms multiplied by
aDe on the right-hand side of (3.20) constitute the viscoelastic contribution, which
are written explicitly in terms of f2 and its derivatives. Consequently, one may set

Ψ3(ξ, η) = ξ f3(θ) + g3(θ), (3.22)

where g3(θ) accounts for non-Newtonian contribution. The term ξ f3(θ) corresponds
exactly to the Newtonian case (Tillett 1968). Substitution of expression (3.22) into
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(3.20) yields two differential equations for f3 and g3. The f3 equation is

f ′′′
3 +

2

3
f2f

′′
3 − f ′

2f
′
3 + f ′′

2 f3 = 0, (3.23)

with boundary conditions obtained from (3.21a), namely

f3 (0) = f ′′
3 (0) = 0. (3.24a)

The third boundary condition is obtained from (3.21b):

f3(θ) ∼ −2

3
θ3 as θ → ∞. (3.24b)

Equation (3.23) is a linear equation that can be solved numerically. An asymptotic
solution has been given by Tillett (1968) in the form

f3(θ) = −2

3
[(θ + c)3 − 3] + B3(θ + c) + O

[
exp

(
−2

9
θ3

)]
. (3.25)

The numerical integration of (3.22) gives the value B3 = −2.08913. The g3 equation
turns out to be

g′′′
3 +

2

3
f2g

′′
3 = −2

3
aDef2f

iv
2 . (3.26)

Two boundary conditions, namely the vanishing of g3 and its second derivative at
θ = 0, are deduced from (3.21a). Obviously, a third boundary condition is needed in
order to solve (3.26), which cannot be obtained from matching with the outer solution
as in the case of f2 and f3. However, the asymptotic form (3.19) of f2 indicates that
the right-hand side of (3.26) vanishes as θ → ∞. In this case, g3 must behave linearly
at large θ . Thus, g3 = C3θ + constant at large θ . This condition will be used, in turn,
to establish a direct relation between the slopes of g3 at the origin and at infinity (see
§ 6), which constitutes the third boundary condition required to solve (3.26). It will be
shown from matching (§ 5) that only the slope at large θ is needed, and the constant
is therefore unimportant. Thus, the three boundary conditions needed to solve (3.26)
turn out to be

g3(0) = g′′
3 (0) = 0, g′

3(0) � 1.806g′
3(∞). (3.27)

Equation (3.26) indicates that g3(θ) is proportional to aDe. The distributions of f2, f3

and g3 are found upon integrating numerically (3.17), (3.23) and (3.26), respectively.
Equation (3.26) is solved as an initial-value problem. The integration is carried out
starting at θ = 0, with a guessed value for g′

3(0). A shooting method is used to refine
the guess until condition (3.27) is met at large θ . Figure 2 displays the dependence of
f2, f3 and g3/aDe on θ . Although f2 and f3 are exactly the same as for a Newtonian
jet, they are included here for reference. Indeed, g3 reflects the influence of normal
stress and deviation from Newtonian behaviour. The figure shows that g3 and f3

become comparable in magnitude for aDe =O(10). In this case, the elasticity number
E = De/Re or, say, E = aDe/Re = O(10ε3). In fact, a smaller value of the Deborah
number is sufficient for elastic effect to be significant for small distance to the exit. In
fact, expression (3.22) suggests that elastic or normal stress effects are most significant
close to the channel exit.

The expression for u in the inner region is obtained upon using expressions (3.11a),
(3.16) and (3.22), leading to

u(x, θ) = εx1/3f ′
2(θ) + ε2

[
x2/3f ′

3(θ) + x−1/3g′
3(θ)

]
. (3.28)
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Figure 2. Dependence of the similarity functions f2, f3 and g3 on θ .

Figure 3 displays the dependence of the streamwise velocity profiles on position
(figure 3a) and elasticity (figure 3b) for ε = 0.1. These profiles allow, in turn, the determ-
ination of the boundary-layer thickness. Figure 3(a) shows the gradual flattening of the
velocity profile with position and the simultaneous convergence, which is particularly
evident from the saturation of the corresponding asymptotic profiles. The boundary-
layer thickness δ(x), or equivalently the thickness of the inner region, coincides with the
level at which the asymptotic and inner velocity profiles begin to merge. The boundary-
layer thickness grows with position. Eventually, the inner region continues to grow
with position as the jet contracts, and the flow approaches uniform conditions (see
also § 4.4), at which point the boundary layer prevails over the entire jet. Figure 3(b)
indicates that the asymptotic solution tends to underestimate (overestimate) the
velocity level for a flow with weak (strong) elasticity. The linear dependence of the
velocity profiles on aDe is also apparent from expression (3.28). Finally, the thickness
of the boundary layer increases with elasticity. This will be further confirmed in § 6.

4. The flow in the core region (outer and channel regions)
It is convenient to define the core region as comprising the outer region outside

the channel (x > 0) and the channel region upstream from the exit (x < 0). In the core
region, which is far from the region near z = 0, ψ , p, q, r and s are represented by the
following outer expansions:

ψ(x, z) = ψ0(x, z) + εψ1(x, z) + . . . , (4.1a)

p(x, z) = p0(x, z) + εp1(x, z) + . . . , (4.1b)

q(x, z) = q0(x, z) + εq1(x, z) + . . . , (4.1c)

r(x, z) = r0(x, z) + εr1(x, z) + . . . , (4.1d)

s(x, z) = s0(x, z) + εs1(x, z) + . . . . (4.1e)

Here, ψ0, q0, s0 and r0 are just the basic Poiseuille flow variables given in (2.9a)–(2.9d);
ψk , qk , sk and rk (k > 0) are higher-order terms that denote the deviation from the basic
flow due to its interaction with the boundary layer. Since the governing equations are
elliptic (in x), this deviation will extend also to the region x < 0 in the channel.
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Figure 3. Dependence of the streamwise velocity profiles in the boundary-layer region for
ε = 0.1 (a) on position at aDe = 2 and (b) on elasticity at x =0.5. The dashed curves indicate
asymptotic behaviour.

Based on these assumptions, upon inserting expressions (4.1) into (2.10a)–(2.10e)
and noting that the leading-order flow variables, expressions (2.9a)–(2.9d), depend
only on z, a hierarchy of equations is obtained to each order. To leading order the
resulting equations for k = 0 lead to p0(x, z) = 0. For k = 1, one has

ψ0zψ1xz − ψ0zzψ1x = −p1x, (4.2a)

−ψ0zψ1xx = −p1z, (4.2b)

De (ψ0zq1x − ψ1xq0z − 2q0ψ1xz − 2s0ψ1zz − 2s1ψ0zz) + q1 = 2aψ1xz, (4.2c)

De (ψ0zr1x + 2s0ψ1xx) + r1 = −2aψ1xz, (4.2d)

De (ψ0zs1x − ψ1xs0z + q0ψ1xx − r1ψ0zz) + s1 = a (ψ1zz − ψ1xx). (4.2e)

Upon eliminating p1 from (4.2a) and (4.2b), the following equation is obtained for
ψ1:

∇2ψ1x − ψ0zzz

ψ0z

ψ1x = 0, (4.3)
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where ∇2 = (∂2/∂x2) + (∂2/∂z2). Noting that w1 = −ψ1x , the following boundary-value
problem in the ranges −∞ � x � ∞ and 0 � z � 1/2 is concluded:

∇2w1 + 2
z(1−z)

w1 = 0,

w1

(
x, 1

2

)
= 0,

w1(x, 0) = 0 for x < 0,

w1(x, z → 0) = −λ1(x) for x > 0,

w1 bounded as |x| → ∞.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(4.4)

The matching condition obtained in § 5 gives λ1 = 0. In this case, the (unique) solution
to the boundary-value problem (4.4) is w1(x, z) = 0 for any x and z. Consequently,
and since ψ1(x → −∞, z) = 0, ψ1, p1, q1, r1 and s1 must vanish everywhere. For k = 2,
one has

ψ0zψ2xz − ψ0zzψ2x = −p2x, (4.5a)

−ψ0zψ2xx = −p2z, (4.5b)

De (ψ0zq2x − ψ2xq0z − 2q0ψ2xz − 2s0ψ2zz − 2s2ψ0zz) + q2 = 2aψ2xz, (4.5c)

De (ψ0zr2x + 2s0ψ2xx) + r2 = −2aψ2xz, (4.5d)

De (ψ0zs2x − ψ2xs0z + q0ψ2xx − r2ψ0zz) + s2 = a (ψ2zz − ψ2xx) . (4.5e)

Note that the terms including ψ1, q1, r1 and s1 vanish. Eliminating p2 from (4.5a) and
(4.5b) leads to a similar problem as in (4.4), where w1 and λ1 are now replaced by
w2 and λ2, respectively. From matching (§ 5), it is also found that λ2 = 0. This leads,
in turn, to the vanishing of w2 and, consequently, of ψ2, p2, q2, r2 and s2 everywhere,
similarly as before. For k = 3, the governing equations, (2.10a)–(2.10e), reduce to

ψ0zψ3xz − ψ0zzψ3x = −p3x − 4aRv + s0z, (4.6a)

−ψ0zψ3xx = −p3z, (4.6b)

De (ψ0zq3x − ψ3xq0z − 2q0ψ3xz − 2s0ψ3zz − 2s3ψ0zz) + q3 = 2aψ3xz, (4.6c)

De (ψ0zr3x + 2s0ψ3xx) + r3 = −2aψ3xz, (4.6d)

De (ψ0zs3x − ψ3xs0z + q0ψ3xx − r3ψ0zz) + s3 = a (ψ3zz − ψ3xx) . (4.6e)

From matching, it is found that λ3 = 2. In this case, using expressions (2.9a)–(2.9d)
and eliminating p3 from (4.6a) and (4.6b) lead to the following non-homogeneous
problem:

∇2w3 +
2

z(1 − z)
w3 = 0,

w3

(
x, 1

2

)
= 0,

w3 (x, 0) = 0 for x < 0,

w3 (x, z → 0) = −2 for x > 0,

w3 bounded as |x| → ∞,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4.7)

where w3 = −ψ3x . The solution of problem (4.7) does not vanish given the non-
homogeneity of the boundary conditions. So far, the formulation in this section has
been common to the regions both inside and outside the channel. Although the flow
fields in these two regions will have to match at the channel exit (x =0), they can
conveniently be examined separately.
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4.1. Flow in the channel region

Consider now the core flow in the region x < 0. In this case, the solution of (4.7) may
be written as (Tillett 1968)

w3(x < 0, z) = −ψ3x(x < 0, z) = −
∞∑

n=1

Ane
βnxVn (z) . (4.8)

The shape functions Vn are governed by the following eigenvalue problem:

V ′′
n +

[
β2

n +
2

z (1 − z)

]
Vn = 0, (4.9a)

Vn(0) = Vn

(
1

2

)
= 0, (4.9b)

with βn being real and positive (Tillett 1968). The coefficients An are obtained by
matching the flow at the channel exit, which will be carried out in subsection 4.2. The
pressure inside the channel is determined from (4.6b) subject to appropriate boundary
conditions, which are obtained as follows. First recall from § 3 that the pressure in
the inner region (x > 0) was shown to be O(ε4). Consequently, upon matching the
pressures in the outer and inner regions, it is not difficult to deduce that the pressure
in the outer region outside the channel vanishes at the interface or

p3(x > 0, 0) = 0. (4.10)

Thus, at the channel exit, this gives p3(0, 0) = 0. Now, upon evaluating (2.9a) and
(2.9c) at z = 0 (x < 0), (4.6a) reduces to

p3x(x, 0) = −4aRv − 4a = −4, (4.11)

which is integrated subject to p3(0, 0) = 0 to give

p3(x, 0) = −4x. (4.12)

Upon inserting expressions (2.9a) and (4.8) into (4.6b), the expression for the transverse
pressure gradient inside the channel becomes

p3z = −2

∞∑
n=1

An

βn

eβnx[z(1 − z)V ′′
n (z) + 2Vn(z)], (4.13)

which must be integrated subject to condition (4.12), leading finally to

p3(x < 0, z) = −4x − 2

∞∑
n=1

An

βn

eβnx[z(1 − z)V ′
n − 2(1 − 2z)Vn]. (4.14)

Although the flow kinematics in the core region inside the channel, at least to O(ε3),
is the same for both Newtonian and viscoelastic fluids, it is nevertheless useful to
include some observations on the flow behaviour across the channel without actually
showing any results. Although Poiseuille conditions are theoretically recovered in the
limit x → −∞, calculations indicate that these conditions prevail essentially for x < −1,
corresponding to a distance approximately of one channel width. Given the dominance
of the leading term in (4.1a) and (4.1b), little deviation from the Poiseuille profile is
expected. This is particularly true in the case of the streamwise velocity component
and the pressure. The pressure remains essentially constant across the channel, except
very close to the exit. A more significant deviation, at least qualitatively, is expected
for the transverse velocity component.
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The excess stress components can be determined upon substituting the expression
for the stream function into the stress equations (4.6c)–(4.6e). The stream function
(as well as the streamwise velocity component) is determined upon integrating (4.8)
subject to ψ3 → 0 as x → −∞. The stress equations are solved subject to q3, r3, s3 → 0
as x → −∞ to give

q3(x, z) =

∞∑
n=1

Q̄n(z)e
βnx, (4.15a)

r3(x, z) =

∞∑
n=1

R̄n(z)e
βnx, (4.15b)

s3(x, z) =

∞∑
n=1

S̄n(z)e
βnx, (4.15c)

where

Q̄n(z) =
1

1 + βnDeψ0z

[
De

(
Anq0zVn + 2Anq0V

′
n +

2s0AnV
′′
n

βn

+ 2ψ0zzS̄n

)
+ 2aAnV

′
n

]
,

(4.16a)

R̄n(z) = − 2An

1 + βnDeψ0z

(Des0βnVn + aV ′
n), (4.16b)

S̄n(z) =
1

1 + βnDeψ0z

[
−Deψ0zzR̄n + DeAn (s0z − βnq0) Vn + aAn

(
V ′′

n

βn

− βnVn

)]
.

(4.16c)

Expressions (4.15) will be used below to assess the influence of elasticity on stress
along the centreline.

4.2. Flow in the outer region

Downstream from the channel exit, Tillett’s solution is rewritten here as

w3(x > 0, z) = −ψ3x(x > 0, z) = −2V0(z) +

∞∑
n=1

Ane
−βnxVn(z), (4.17)

where

V0(z) = 1 − 2z − 2z(1 − z) ln
z

1 − z
. (4.18)

As mentioned earlier, the coefficients An are obtained by matching w3 at x = 0. It
is not difficult to show from (4.8) and (4.17), given the orthogonality of the shape
functions Vn, that

An =

∫ 1/2

0

V0(z)Vn(z) dz∫ 1/2

0

V 2
n (z) dz

. (4.19)

Incidentally, the An values given by Tillett (1968) are incorrect. These values are,
however, easy to reproduce and will not be given explicitly here. An expression for the
pressure can be obtained in the outer region similar to the channel region. In this case,

p3(x > 0, z) = −2

∞∑
n=1

An

βn

e−βnx[z(1 − z)V ′
n − 2(1 − 2z)Vn]. (4.20)
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Figure 4. Flow and stress behaviour along the centreline. The (streamwise) velocity, pressure
and primary normal stress difference are shown in (a), (b) and (c), respectively. Here ε = 0.3,
a = 0.25 and De = 4.

The expressions for the stress components in the outer region outside the channel
(x > 0) can be determined upon solving (4.6c)–(4.6e) and matching with expressions
(4.15) at x = 0. These expressions are not difficult to obtain but are cumbersome. For
this reason, they will be given next only along the centreline z =1/2.

4.3. Flow along the centerline

The flow along the centreline z =1/2 is interesting to examine, as it provides insight
on the flow transition as the fluid exits the channel. Figure 4 displays the deviation
of the streamwise velocity from the basic flow (figure 4a), the pressure (figure 4b)
and primary normal stress difference (figure 4c) along the centreline. Note that the
normal stress difference includes the Newtonian contribution. Poiseuille conditions
for velocity and pressure appear to be reached when x < − 0.5. Most of the deviation
in velocity occurs outside the channel. In fact, the velocity decreases slightly from
the Poiseuille level for x < 0, indicating a flattening of the velocity profile as the exit
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is approached. The velocity continues to decrease faster (essentially linearly) with x
outside the channel. This behaviour is inferred from the expression for u(x, z), which
is obtained by integrating expressions (4.8) and (4.17), matching at x = 0 and using
(4.1a). At the centreline, this gives

u

(
x, z =

1

2

)
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

2
+ ε3

∞∑
n=1

An

βn

eβnxV ′
n

(
1

2

)
(x < 0),

1

2
− ε3

[
8x −

∞∑
n=1

An

βn

e−βnxV ′
n

(
1

2

)]
(x > 0).

(4.21)

This expression shows that the velocity decreases like −8ε3x at large x > 0.
Simultaneously, the pressure distribution in figure 4(b) confirms that Poiseuille
conditions are recovered at x ≈ −0.5. The pressure decays with x, reaching zero level
outside the channel, at a distance slightly smaller than one channel width (x ≈ 0.8),
based on (4.20). Interestingly, the linear decay in velocity occurs at a position closer
to the exit (x ≈ 0.5). The expression for the (primary) normal stress difference on the
centreline inside the channel reads

N1

(
x < 0, z =

1

2

)
= 4aε3

∞∑
n=1

(
Rv +

2

2 + βnDe

)
An eβnxV ′

n

(
1

2

)
, (4.22a)

whereas that outside the channel reduces to

N1

(
x > 0, z =

1

2

)
= −32ε3 − 4aε3

∞∑
n=1

(
Rv +

2

2 − βnDe

)
An e−βnxV ′

n

(
1

2

)

+ 32aε3

[
1 +

∞∑
n=1

An

4 − (βnDe)2
V ′

n

(
1

2

)]
e− 2x

De . (4.22b)

The primary normal stress difference in figure 4(c), which is shown for De = 4 and
a =0.25, indicates that the stress relaxes to the Poiseuille level at a distance further
upstream from the channel exit (x ≈ −1), in comparison to the velocity and pressure.
The normal stress experiences a sharp gain at x = 0. It is interesting to note that
this gain is caused mainly by Newtonian and not elastic elongation of the flow as it
traverses the exit. In fact, the stress relaxes to the Newtonian level (N1 = −32ε3) at a
relatively short distance downstream from the exit (see expression (4.22b)). The overall
influence of elasticity on the normal stress difference along the centreline is depicted
in figure 5 for the range De ∈ (0, 5]. The effect of elasticity seems rather weak in the
channel region. For large x > 0, the stress relaxes less rapidly to the Newtonian level
as De increases. There is, however, a saturation effect of elasticity that can be inferred
from figure 5 and expressions (4.22) for large De. More importantly, elasticity tends
to diminish the normal stress level. This may seem counterintuitive at first. However,
examination of the stress level near the free surface (see § 7) will indeed confirm the
overall increase of normal stress effect with increase of the Deborah number.

4.4. Contraction ratio of the viscoelastic jet

This section is concluded by utilizing the outer solution to compute the final velocity
W and the final contraction ratio χ of the jet far downstream from the exit. The
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Figure 5. Influence of elasticity on the primary normal stress difference along the centreline
for a = 0.25.
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Figure 6. Control volume used in the evaluation of contour integral (4.23).

non-dimensional momentum equation may be written in integral form as∫
C

(σ − uu) · nl = 0, (4.23)

where u is the velocity vector and σ is total stress tensor given by

σ = −p I + ε3aRv(∇u + ∇ut ) + ε3τ , (4.24)

where τ is the non-dimensional polymeric stress tensor. Here dl denotes a line
element of the closed curve C, which is taken to consist of the following arcs: (i)
a line x = x1 < 0, 0 � z � 1/2 upstream; (ii) a segment x1 � x � 0, z = 0 of the lower
wall; (iii) a segment 0 � x � x2, z = ζ (x) of the lower free streamline; (iv) a line x = x2,
ζ (x2) � z � 1/2 downstream; (v) the segment x1 � x � x2, z = 1/2 of the centreline (see
figure 6). Only the x component of (4.23) is considered. Thus, (iii) and (v) will not
make any contribution. In the limit x2 → ∞, one obtains∫ 1/2

0

[(p − 2ε3aRvψxz − ε3q) + ψ2
z ]x=x1

dz −
∫ 0

x1

ε3 [aRvψzz(x, 0) + s] dx − 1

2
W 2χ = 0.

(4.25)

From (4.14) it can be deduced that as x1 → −∞, p → −4ε3x1. Note that in this limit,
also ψ → ψ0 and q → q0. Thus, there is a cancellation between the pressure of the
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basic Poiseuille flow and its integrated skin friction, leaving

1

2
W 2χ =

∫ 1/2

0

(
ψ2

0z − ε3q0

)
x=x1

dz + o(ε3), (4.26)

which, upon use of (2.9a) and (2.9d), leads to

1

2
W 2χ =

1

15
− 4

3
ε3aDe + o(ε3). (4.27)

From conservation of mass, one has

Wχ =
1

3
. (4.28)

Finally, from (4.27) and (4.28), the contraction ratio and the velocity far downstream
are obtained explicitly in terms of the Reynolds and Deborah numbers, as well as the
viscosity ratio, as

χ =
5

6
(1 + 20ε3aDe) + o(ε3), (4.29)

W =
2

5
− 8ε3aDe + o(ε3). (4.30)

Clearly, expression (4.29) indicates that elasticity tends to prohibit contraction. The jet
contraction ratio increases linearly with aDe. Interestingly, (4.29) reveals the intricate
interplay among inertial, viscous and normal stress effects. Also of interest here is
the fact that in contrast to a viscoelastic jet, the contraction of a Newtonian jet does
not depend on inertia to the order of the present analysis (with a contraction ratio
χ =5/6). Of course, this is the case of a jet at relatively high Reynolds number. The
contraction ratio, χ , increases with aDe at a rate of (50/3)ε3. The contraction ratio
of the jet close to the exit will be discussed later once the matching process is carried
out and the composite solution is obtained.

5. Matching process
The matching rule employed by Van Dyke (1964) is adopted here, namely

EnHmψ = HmEnψ, (5.1)

where m and n are integers. Here, En is the outer-expansion operator, which truncates
immediately after the term of order εn where the expansion is expressed in terms
of outer variables; Hm is the corresponding inner-expansion operator. For successful
application of the matching rule (5.1), the stretching transformation between the
inner and outer variables must be in the canonical form y = εη. In this case, the outer
expansion must be written in terms of y, not z; otherwise (5.1) can be satisfied only
approximately. It is required that the two expressions in (5.1) be exactly the same, for
all m and n.

Recall that to leading order, the stream function in the outer region is ψ0 = z2 −
(2/3)z3, which can be expressed in terms of y and h as (see § 3)

ψ = (y + εh)2 − 2

3
(y + εh)3. (5.2)

Consider first m =2 and n= 0. Applying E0 on (5.2) gives

E0ψ = y2 − 2

3
y3. (5.3)
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As this expression must be in inner variables when the operator H2 is applied, E0ψ

is rewritten in the form

E0ψ = ε2η2 − 2

3
ε3η3. (5.4)

Therefore,

H2E0ψ = ε2η2 = y2. (5.5)

To leading order, the inner expansion for the stream function is obtained from (3.8)
as ψ = ε2Ψ2. This leads to Ψ2 ∼ η2 for large η, which is condition (3.15) or equivalently
(3.18b). Recall that this condition led to the determination of f2. Consequently, from
(3.8), (3.16) and (3.19), at large θ

H2ψ = ε2Ψ2 = ε2ξ 2/3f2 = ε2ξ 2/3(θ + c)2 = ε2ξ 2/3(ηξ−1/3 + c)2. (5.6)

When (5.6) is expressed in terms of outer variables, it becomes

H2ψ = (y + εcx1/3)2 = y2 + 2yεcx1/3 + ε2(cx1/3)2, (5.7)

leading to

E0H2ψ = y2, (5.8)

as required. So it can be seen that for n= 0 and m =2, the inner and outer expansions
match, and (5.1) is satisfied. Similarly, taking n= 0 and m = 3 leads to

H3E0ψ = ε2η2 − 2

3
ε3η3, (5.9)

which, in turn, leads to Ψ3 ∼ − (2/3)η3 and consequently to condition (3.24b). Next,
(5.1) is considered with m =2 and n= 1. In this case, from (2.9a), (3.1), (3.9) and
(4.1a),

E1ψ = y2 − 2

3
y3 + ε[ψ1(x, y + εh) + 2(y − y2)h0(x)]. (5.10)

Expanding about y, (5.10) reduces to

E1ψ = y2 − 2

3
y3 + ε[ψ1(x, y) + 2(y − y2)h0(x)]. (5.11)

In this case, noting that y = εη is small, one has

H2E1ψ = εψ1(x, 0) + ε2(η2 + ηψ1y(x, 0) + 2ηh0(x))

= y2 + ε[ψ1(x, 0) + yψ1y(x, 0) + 2yh0(x)]. (5.12)

On the other hand, applying E1H2 on the inner expansion (3.8) and using (5.7) give

E1H2ψ = E1(ε
2Ψ2) = y2 + 2εcyx1/3. (5.13)

Comparing (5.12) and (5.13) leads to ψ1(x, 0) = 0. This leads in turn to the
homogeneous boundary condition λ1(x) = −ψ1x(x, 0) = 0 for problem (4.4). Since
ψ1 = 0 everywhere is a solution for this problem (see § 4), one concludes that
ψ1y(x, 0) = 0. The remaining terms in (5.12) and (5.13) then yield the result
h0(x) = cx1/3. In this case, recalling that c =0.70798, the free-surface height is given
by

ζ (x) = 0.70798εx1/3 + O(ε2). (5.14)

The vanishing of ψ1(x, z) means that to the order ε, there is no interaction between
the boundary layer and the outer flow. Obviously, no elastic or normal stress effect
intervenes to this order. The form of h0(x) obtained also ensures that (5.1) is satisfied
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for m =3 and n= 1. The next step is to determine ψ2(x, z) and h1(x) by considering
a matching process analogous to the one above, using m = n= 2. By applying H2E2

to the outer expansion (4.1a) and E2H2 to the inner expansion (3.8), one has

H2E2ψ = y2 + 2εyh0 + ε2
(
h2

0 + ψ2 (x, 0)
)

(5.15)

and

E2H2ψ = y2 + 2cεyx1/3 + c2ε2x2/3. (5.16)

This yields the fact that ψ2(x, 0) = 0 in the outer expansion, concluding that
ψ2(x, z) = 0, reflecting the absence of interaction between the boundary layer and
the outer flow also to the order ε2. The next step is to determine h1(x) and ψ3(x, 0).
Upon using expressions (3.8), (3.16) and (3.22), for n= m =3, one obtains

E3H3ψ = y2 − 2

3
y3 + 2ε

(
y − y2

)
cx1/3 + ε2

[
(1 − 2y) c2x2/3 + B3yx2/3 + C3yx−1/3

]
+ ε3

(
−2

3
c3x + B3cx + 2x + C3c

)
. (5.17)

Applying H3E3 to the outer expansion (4.1a) gives in turn

H3E3ψ = y2 − 2

3
y3 + 2ε

(
y − y2

)
h0 + ε2

[
(1 − 2y) h2

0 + 2yh1

]
+ ε3

(
−2

3
h3

0 + 2h0h1 + ψ3 (x, 0)

)
. (5.18)

Upon matching, the height of the free surface to the next order, h1, is determined.
Also, the boundary condition, which is required to complete the set of boundary
conditions in (4.7), is obtained. Thus,

h1 =
1

2

(
B3x

2/3 + C3x
−1/3

)
, (5.19)

ψ3(x, 0) = 2x. (5.20)

Condition (5.20) yields that λ3 = 2 in (4.7). Therefore, for the first time, a non-trivial
outer problem is reached. It can be concluded that the outer flow up to order ε3

remains the same as the Newtonian flow. However, the important result reached here
from the matching process is that the height of the free surface is no longer the same
as the Newtonian case and is given by

ζ (x) = εcx1/3 +
1

2
ε2

(
B3x

2/3 + C3x
−1/3

)
, (5.21)

where c and B3 are known constants, whereas C3, which embodies elastic behaviour,
remains unknown at this stage but will be determined in the next section.

6. Flow very close to the channel exit and jet profile
Upon setting θ = 0 in (3.28), an expression is obtained for the streamwise velocity

component at the free surface, u(x, z = ζ ). Inspection of this expression and expression
(5.21) for the free-surface height readily indicates that these expansions break down in
the limit x → 0. This situation is reminiscent of that corresponding to Newtonian flow
when higher-order terms are included in the boundary-layer region (see § 7 in Tillett
1968). It is important to observe, however, that although the Newtonian expansions
for streamwise velocity and surface height do not display a singularity at the origin
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up to second order, the slope in height as well as the streamwise velocity gradient
(rate of elongation) and, consequently, the transverse velocity component all become
singular at x = 0. It is therefore expected that for viscoelastic jet flow, the breakdown
in velocity gradient should lead to a breakdown in stress and ultimately in velocity
(and surface height) because of the coupling between stress and flow. The situation
is remedied by assuming the existence of a region, 0<x <x∗, near the origin within
which the inner flow and stress expansions (3.8), (3.9) and (3.11) cease to be valid.

6.1. Evaluation of x∗

The distance [0, x∗] is expected to be small and indeed turns out to be of the order
of the boundary-layer thickness (see below). In addition, x∗ can be determined by
first observing that the leading-order terms in (3.28) and (5.21) indicate that both
the free-surface velocity and free-surface height must predominantly remain close to
zero as x → 0. It is therefore reasonable to assume that very close to the channel exit,
the change in free-surface velocity and height is negligible (see Shi, Breuer & Durst
2004). Thus, set

εx1/3
∗ f ′

2(0) + ε2
[
x2/3

∗ f ′
3(0) + x−1/3

∗ g′
3(0)

]
= 0, (6.1)

εcx1/3
∗ +

1

2
ε2

(
B3x

2/3
∗ + C3x

−1/3
∗

)
= 0. (6.2)

Recall that C3 and g′
3(0) are yet to be determined. Recall also that g′

3(θ → ∞) = C3.
Thus, the solution of (6.1) and (6.2) will allow the determination of x∗ and the
establishment of a relation between C3 and g′

3(0) or equivalently the third boundary
condition in (3.27) required to solve (3.26). Since x∗ is small, one may write

x∗ = x1ε
β + x2ε

2β + . . . , (6.3a)

where β is unknown for now. Consequently, inspection of (6.1) and (6.2) leads to the
following expansions:

g′
3(0) = g′

30(0) + g′
31(0)εβ + . . . , (6.3b)

C3 = C30 + C31ε
β + . . . . (6.3c)

Upon substituting (6.3) into (6.1) and (6.2), it is not difficult to conclude that in order
to have a balance among the terms in both equations, one should set β = 3/2. In this
case, (6.1) gives, to leading order in (6.3a),

x1 =

(
−g′

30(0)

f ′
2(0)

)3/2

. (6.4)

This leads, in turn, upon substitution into (6.2) to the relation

g′
30(0) =

C30f
′
2(0)

2c
= 1.806C30 (6.5)

between C30 and g′
30(0), which is used approximately as the third boundary condition

in (3.27). From the numerical solution of (3.26) one finds C3 � C30 = −1.72aDe. The
value of β = 3/2 is confirmed by assessing the weight of terms in the original equation
of motion, (2.10) in the inner region, which is rewritten here as

Re

[
u

(
ux −

(
θ

3x
+

h′

x1/3

)
uθ

)
− 1

εx1/3
wuθ

]

= aRv
1

ε2x2/3
uθθ + qx −

(
θ

3x
+

h′

x1/3

)
qθ − 1

εx1/3
sθ . (6.6)
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The region of validity of the boundary-layer solution in the inner region can be
estimated as follows. To leading order, near the free surface (inner region), the
streamwise velocity and normal stress, as well as the shear stress components and
free-surface height, are recalled from §§ 3 and 5 as

u ≈ εx1/3f ′
2(θ), q ≈ 2aDe

[
f ′′

2 (θ)
]2

, s ≈ af ′′
2 (θ), h = cx1/3. (6.7)

This solution is applicable close to the exit, including x =0, since it does not exhibit
any singularity. Using these expressions and upon balancing the inertial, viscous and
elastic terms in (6.6), one has

ε−1x−1/3
∗ ∼ εx1/3

∗ δ−2
∗ ∼ x−1

∗ aDe. (6.8)

This relation is equivalent to two equations with two unknowns, namely the position,
x∗, at which (6.7) becomes valid and the corresponding value of the boundary-layer
thickness, δ∗ ≡ δ(x = x∗), at that position. Solving leads to

x∗ ∼ ε3/2(aDe)3/2, δ∗ ∼ ε3/2
√

aDe. (6.9)

The first estimate in (6.9) confirms the validity of expansion (6.3). Interestingly, this
estimate indicates that x1 in (6.3) increases like (aDe)3/2, which, in turn, confirms
from (6.4) that g′

3(0) behaves like aDe. More importantly, both x∗ and δ∗ are of the
same order of magnitude, which is typical of boundary-layer flows. In other words,
this confirms that the boundary-layer approximation is valid only beyond a distance
from the channel exit that is of the order of the boundary-layer thickness.

6.2. Boundary-layer thickness very close to channel exit

A more accurate estimate of the boundary-layer thickness at any position is obtained
numerically using expression (3.28) for the streamwise velocity component in the
inner region and its asymptotic counterpart for large θ , namely

u(x, θ → ∞) = 2εx1/3(θ + c) + ε2[x2/3(B3 − 2θ2 − 4cθ − 2c2) + x−1/3C3]. (6.10)

Note in this case that the boundary-layer thickness depends on the similarity group
aDe and ε. Figure 7 displays the dependence of δ∗ on inertia and elasticity. The plots
show that the boundary-layer thickness increases with elasticity and decreases with
inertia. Figure 7(a) displays the dependence of δ∗ on ε for three aDe values. Note
that the limit δ∗(ε = 0) = 0 corresponds to the inviscid limit, where no boundary layer
exists. The inset in figure 7(a) indicates that the slope in the log–log plots is sensibly
the same and is approximately equal to 1.55. The numerical results in figure 7(b) give
a slope of approximately 0.51, independent of the Reynolds number, confirming the
universal dependence of the boundary-layer thickness on elasticity. One thus arrives
at the following behaviour for the boundary-layer thickness near the channel exit:

δ∗ � Cε1.55(aDe)0.51, (6.11)

where C is a constant. In this case, (6.11) confirms the behaviour predicted in (6.9)
based on dimensional arguments.

6.3. Jet profile

Figure 8 shows the dependence of the free-surface height on elasticity. It is interesting
to note that aDe appears as the only parameter; a and De do not appear separately.
This is easily inferred from expressions (5.21) and figure 2 (with the latter showing
that g′

3(0) and, therefore, C3 depend on aDe). As expected, the jet contracts for any
Deborah number given the presence of relatively high inertia. However, the effect
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Figure 7. Dependence of boundary-layer thickness on (a) inertia and (b) elasticity at x = x∗.

of normal stress is significant. Elasticity tends to delay the contraction further
downstream from the channel exit, in comparison with a Newtonian jet, which
contracts at x = 0. In addition, the contraction is weakened by normal stress.
Incidentally, the contraction ratio close to the exit can be inferred from figure 8.
Figure 9 compares the contraction ratio at infinity to that at x = 2. The figure indicates
that the contraction ratio at x =2 (or essentially any x) also increases linearly with
the Deborah number, at a slope equal to 0.0134 for ε =0.1 in comparison with 0.0168
based on expression (4.29). Finally, the distributions of the velocity components can
be obtained along the free surface by setting θ = 0. The expression for u(x, z = ζ ) is
given from (3.28), whereas that for w(x, z = ζ ) is deduced from (3.8) and (5.21) to
give

w(x, θ = 0) =
ε2

3
cx−1/3f ′

2(0) +
ε3

3
(cf ′

3(0) + B3f
′
2(0)) + o(ε3). (6.12)

Note that because of (6.5), w(x, z = ζ ) turns out to be independent of elasticity,
as reflected in figure 8. There is close qualitative similarity between the ζ and u
distributions (not shown here).

For relatively large De, the straight segment of the jet in figure 8, or x∗, is expected
to lengthen further, and the contraction is expected to eventually give way to swelling.
This is the delayed swell scenario, where normal stress effect is strong with inertia
remaining moderate. The swell occurs closer to the exit if elasticity is further increased.
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Delayed swell appears to be caused by some inertial mechanism (Cloitre et al. 1998).
Obviously, the whole range of normal stress effect cannot be captured by the present
formulation, which is adequate for a flow with dominant inertia and De = O(1). Of
course, in the absence of inertia, the swell occurs right at the channel exit (Tanner
1999).

6.4. Comparison with gravity-driven flow measurements

Of closer relevance to the present results are the measurements reported by Liang et al.
(1999). Although their study focused on the interplay between gravity and normal
stress effects, some qualitative comparison with the present results is possible, since
gravity plays a somewhat similar role to inertia. Note, however, the absence of inertia
in their experiment, with Re = O(10−5–10−3). Referring back to figure 8, one observes
the jet profiles reported for a range of Deborah number, 0 � aDe � 3. For very small
De, the jet contracts right at the channel exit. This is the necking phenomenon, which
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is typical of Newtonian jet flow at moderate Reynolds number. This behaviour was
also observed by Liang et al. (1999) in their greyscale images in figure 2(a). As De
increases, figure 8 shows that the jet height near the exit becomes of the same level
as the channel height. This situation is similar to that reported by Liang et al. (1999)
in figure 2(b) of their work for De = 0.55. For larger De value, their figure 2(c) shows
that the jet has larger diameter than that of the pipe at the exit. Referring to the jet
profiles in figure 4 of Liang et al. (1999), one can observe the influence of normal
stress over a wide interval of the Deborah number, ranging from the purely elastic
regime, where die swell is observed, to the gravity dominant regime, where necking is
observed. Some direct comparison is now carried out with their results.

Of particular interest to the present work are the jet profiles in the range
0.43 � De � 0.62 in figure 4 of Liang et al. (1999), which should be compared with
the profiles of figure 8 above. In this range of Deborah number, the experimental
jet profiles of Liang et al. (1999) exhibit a flat region near the exit, reflecting the
balance between elastic and gravity effects, similar to the balance between elasticity
and inertial effects in the present problem. At a distance beyond the flat region, say
x∗, contraction is observed. These experimental profiles are now used to estimate the
dependence of the experimental x∗ value on elasticity and compare it to the current
theory. The comparison is shown in figure 10, which displays the dependence of x∗ on
aDe. Figure 10(a) shows the theoretical values obtained numerically by solving (3.17)
and (3.26) and the use of (6.3a) and (6.4). The log–log plot in the inset of the figure
suggests that x∗ increases with elasticity like De3/2, confirming the result in (6.9) based
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on dimensional arguments. The experimental values are shown in figure 10(b), which
are estimated from figure 4 of Liang et al. (1999). The inset in the figure shows that
x∗ roughly increases with elasticity like De4 for gravity-driven flow.

Another variable that is used for comparison between experiment and theory is the
slope of the jet surface at x∗ (see figure 8). Figure 11 shows the dependence of ζ ′(x∗)
on De based on the current theory (figure 11a) and the measurements (figure 11b)
of Liang et al. (1999). Both the experimental and theoretical values indicate that
the slope decreases with elasticity. The theoretical slope values in figure 11(a) are
determined from (5.21) and (6.4), leading to

ζ ′(x∗) =
c

3
εx−2/3

∗ +
1

6
ε2

(
2B3x

−1/3
∗ − C3x

−4/3
∗

)
� 0.52

aDe
+

0.70√
aDe

ε3/2. (6.13)

Thus, to leading order in ε, ζ ′(x∗) ∼ (aDe)−1, which, interestingly, is independent of
the Reynolds number. The correction resulting from the addition of higher-order
terms leads to a slightly different behaviour, namely ζ ′(x∗) ∼ (aDe)−1.03 based on
the inset of figure 11(a). Experimental slope values from figure 4 of Liang et al.
(1999) are reported here in figure 11(b) for comparison. Both theory and experiment
indicate a downward trend of the slope, ζ ′(x∗), with De, reflecting the flattening
of the jet profile with increasing normal stress effect (see also figure 8). Figure 11
shows that in the middle range of Deborah numbers, the experimental trend, with
ζ ′(x∗) ∼ De−1.8, is similar to the theoretical trend. However, there are some notable
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qualitative differences between theory and experiment for the low- and high-De ranges.
In contrast to theory, there is no definite trend for small or large De. The results of
Liang et al. (1999) in figure 11(b) suggest a strong decrease of ζ ′(x∗) towards zero for
large De, in comparison to the smoother (asymptotic) decay exhibited by the current
numerical values in figure 11(a). This suggests, perhaps, that the transition from
necking to swelling, as De increases (De > 0.73 in figure 4 of Liang et al. 1999) occurs
more suddenly for gravity-driven flow compared to inertia-driven flow. However, this
cannot be confirmed by the present theory, which is based on moderately low Deborah
number.

In sum, there is good qualitative agreement between the experimental trends
observed by Liang et al. (1999) and the current theoretical predictions. One cannot
expect good quantitative agreement for several reasons. While planar jet flow is
considered in the current theory, axisymmetric jet flow was examined by Liang et al.
(1999). The experimental jet flow is gravity driven, whereas the current flow is pressure
driven. Another aspect that can lead to discrepancy between theory and experiment
is the detachment of the fluid at the pipe lip observed by Liang et al. (1999). Whether
this phenomenon is real or not remains unclear. Fluid properties can be another
source of discrepancy, such as multiple relaxation times versus single relaxation time
used for the Oldroyd-B model and shear-dependent viscosity versus constant viscosity.
Finally, the current theory is based on the balance between inertial, viscous and elastic
effects, whereas the experiment focused primarily on the interplay between gravity
and elasticity.

7. The composite flow
Following Van Dyke (1964), the composite expansion operator is defined by

Cn ≡ (En + Hn − EnHn). (7.1)

This expression provides a uniform approximation to order εn over the whole width
of the jet.

7.1. Composite flow field

For n= m =3, the composite expansion for the stream function becomes

C3ψ = ε2[x2/3f2(θ) − 2z2h1] + ε3[xf3(θ) + g3(θ)

+ 2(z − z2)h2 + ψ3(x, z) − 2x] + O(ε4). (7.2)

Although the value of h2 is required if the stream function is to be evaluated to O(ε3),
this accuracy is not indispensable when the flow and stress variables are determined.
This is the case, for instance, for the following expressions for the streamwise and
transverse velocity components:

C2u(x, z) = εx1/3f ′
2(θ) + ε2[x2/3f ′

3(θ)

+ x−1/3g′
3(θ) − 2z(B3x

2/3 + C3x
−1/3)] + O(ε3), (7.3)

C2w(x, z) =
ε2

3
x−1/3[(θ + c)f ′

2(θ) − 2f2(θ)] + O(ε3). (7.4)

These expressions dictate how the velocity profile changes over the width of the jet
up to the second order. Note that to this order, elasticity affects u but not w. This is
also the case of the pressure, with non-zero contribution entering only to third order,
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Figure 12. Dependence of (a) streamwise velocity, (b) transverse velocity and (c) pressure
profiles on position for aDe =2 and ε = 0.1.

namely

C3p(x, z) = ε3p3(x, z) + O(ε4), (7.5)

where p3(x, z) is given by (4.20). The flow field (velocity and pressure) at different
positions between the free surface and the centreline is shown in figure 12 for ε = 0.1
and aDe = 2. The u profiles in figure 12(a) indicate that to second order, Poiseuille flow
is recovered at the centreline, so that u(x, z =1/2) = 0.5. There is a strong deviation
from the Poiseuille behaviour in the inner region and an overall flattening of the
profile at large x. Figure 12(b) confirms that the transverse component of the flow is
essentially absent except very close to the free surface. Simultaneously, the pressure
profiles in figure 12(c) suggest the existence of strong pressure variation near the
channel exit. Note, however, the small variation of pressure across the boundary layer
(close to the free surface). The influence of elasticity, which is only reflected in the u
profiles, is illustrated in figure 13 for aDe ∈ [0, 3]. The change in concavity inferred
from figure 12(a) is now obvious. Elasticity appears to be mostly influential near the
free surface. This will be confirmed next when the stress profiles are examined.

7.2. Composite stress field

In consistency with the order in the flow field, the composite expansions for the stress
components are obtained to O(ε). In this case,

C1q(x, z) = 2aDe
(
16z2 + f ′′2

2

)
+ εa

{
1

3
x− 2

3 [f ′
2 − (θ + c) f ′′

2

+ 12De2f2f
′′
2 f ′′′

2 + 12Def ′′
2 g′′

3 ] + 4x1/3Def ′′
2 f ′′

3

}
, (7.6)
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Figure 13. Influence of elasticity on the streamwise velocity profiles at x = 0.5 for ε =0.1.

C1r(x, z) =
2

3
εx− 2

3 a[(θ + c)f ′′
2 − f ′

2] (7.7)

and

C1s(x, z) = af ′′
2 + εa

{
x1/3f ′′

3 + x−2/3

[
g′′

3 +
2

3
De(f2f

′′′
2 − f ′

2f
′′
2 + (θ + c)f ′′2

2 )

]}
. (7.8)

The stress distribution across the flow is illustrated in figure 14 for ε =0.1, a = 0.25
and De = 8, at the same x positions as in figure 12. Note in this case, aDe =2 as for the
profiles in figure 12. While r (figure 14b) decays monotonically with z, both q (figure
14a) and s (figure 14c) exhibit a maximum close to the free surface. Figure 14(b)
suggests that the transverse normal stress component is strongest with a negative
value at the free surface; its level decreases and reaches zero at a location that is
higher as the free surface increases, mirroring the behaviour of w in figure 12(b).
Similarly, figures 14(a) and 14(c) indicate that q and s tend to zero upon approaching
the centreline, but only s vanishes at the free surface; refer to the dynamic conditions
(3.7b) and (3.7c). Note that q does not vanish at the free surface but tends to a small
value there. Overall, all stress components decay to zero rather rapidly with x. This
behaviour is difficult to confirm directly from expressions (7.6)–(7.8), except perhaps
for r. On the other hand, the behaviour near the centreline can be confirmed by
taking the limit of the stress composite expressions for large θ . This is, again, easy to
establish from (7.8); using (3.19), one observes that C1r → 0 for large θ .

Expressions (7.6)–(7.8) clearly reflect the intricate difference in influence that
elasticity and viscosity ratio can have on polymeric stress. Similar to p and w, the
transverse normal stress component r depends only on viscosity ratio, as expression
(7.7) suggests. This means that the traction normal to the flow at any position
is uninfluenced by elasticity. In contrast, (7.8) indicates that s exhibits a linear
dependence on De, whereas (7.6) shows that q varies quadratically with De. This
dependence is confirmed in figure 15 in which q, r and s are plotted for ε = 0.1 and
a =0.25 for the range De ∈ [0, 8], in figures 15(a)–15(c), respectively. Note that the
apparent dependence of r on elasticity in figure 15(b) is only because of the shift of
the free-surface level with De (see figure 8); otherwise the r profiles are similar. The
influence of elasticity on q and s is best inferred by examining the strength of the
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Figure 14. Dependence of (a) polymeric streamwise normal stress, (b) transverse normal
stress and (c) shear stress profiles on position for a = 0.25, De = 8 and ε = 0.1.

maximum in figures 15(a) and 15(c). Note that a maximum (or minimum) must exist
for s, since s vanishes both at the free surface and at the centreline. The maximum
value, qmax , for q, for instance, can be estimated by inspecting (2.11a).

Thus, consider (2.11a) near the free surface. In this case, both s (see figure 14c) and
wz (see figure 12b) are weak. Moreover, at a distance relatively far downstream from
the channel exit, q does not change significantly with x (see figure 14a). Under these
conditions and noting that wz < 0, (2.11a) leads to

qmax ≈ 2a|wz|
1 − 2De|wz|

, (7.9)

which suggests that qmax grows with De. Recall that wz is independent of De. The
rate of growth of the qmax with elasticity is commensurate with that displayed in
figure 15(a).

7.3. Conservation of momentum flux and validation

Finally, a valuable check on the current matching procedure can be carried out by
examining the conservation of the momentum flux between the channel region far
upstream and any position, x = X, outside the channel. The momentum integral is
determined for the viscoelastic jet similar to Tillett (1968), which shows that the
momentum flux is indeed conserved to O(ε3), which is the order of interest here.
Thus, consider the momentum integral (4.23) along path (iv) in figure 6; note that
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x2 = X and is finite. The integral reduces to

M(X) =

∫ 1/2

ζ

[
(p − 2ε3ψxz + ε3q) + ψ2

z

]
x=X

dz. (7.10)

The above integral can be expanded as

M = M0 + ε3M3 + o(ε3). (7.11)

Using (3.8) and (4.1a) to calculate ψ2
z in both the inner and outer regions and applying

rule (7.1), one obtains the composite expression

C3ψ
2
z = 4(z − z2)2 + ε2x2/3

[
f ′2

2 − 4(θ + c)2
]
+ 2ε3[2(z − z2)ψ3z

+ xf ′
2f

′
3 + f ′

2g
′
3 + 4x(θ + c)3 − 2(B3x + C3)(θ + c)] + O(ε4). (7.12)

Substituting expressions (7.2), (7.5), (7.6) and (7.12) into (7.10) and using expression
(7.11), one obtains

M0 =

∫ 1/2

0

4(z − z2)2 dz =
1

15
(7.13)
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and

M3 = −
∫ cx1/3

0

4z2 dz +

∫ 1/2

0

[p3 + 4(z − z2)ψ3z] dz +

∫ 1/2

0

q0 dz

+ x

∫ ∞

0

[
f ′2

2 − 4(θ + c)2
]
dθ. (7.14)

The first term in (7.14) is to account for the fact that the integration starts at z = ζ (x)
and not z =0 (see expression (7.13)). It is not difficult to see that the integration
between 0 and z = ζ (x) gives higher-order terms which are negligible. The last term in
(7.14) is a contribution from expression (7.12) and is simply obtained by changing the
integration variable to θ . The first and the third terms in (7.12) can be integrated at
once to give −(4/3)c3x and −(4/3)aDe, respectively; whereas for the last term, (3.17),
(3.18a) and (3.19) are used to give (2 + (4/3)c3)x. To calculate the second integral,
ψ3(x > 0, z) is first determined by integrating expression (4.17) with respect to x and
matching it with the integral of expression (4.8) at x = 0. In this case, one has

ψ3(x > 0, z) = 2xV0(z) +

∞∑
n=1

An

Bn

e−βnxVn(z). (7.15)

Thus, upon using expressions (4.20) and (7.15), the second integral in (7.14) becomes∫ 1/2

0

[p3 + 4(z − z2)ψ3z] dz = 8x

∫ 1/2

0

(z − z2)V ′
0(z) = −2x, (7.16)

where (4.9) and (4.18) are used. Thus, M3 = −(4/3)aDe and M = (1/15) −
(4/3)ε3aDe + o(ε3). This proves that the momentum flux is indeed the same at any
position (see § 4.4).

8. Concluding remarks
Two-dimensional jet flow of a viscoelastic liquid emerging into the atmosphere is

examined in this study. The Oldroyd-B constitutive model is adopted. The problem is
of direct relevance to polymeric processes such as high-speed extrusion in which inertia
plays a significant role. The effect of elasticity on the profiles of velocity and stress
components and the interplay between fluid elasticity and inertia are investigated.
Inertia is assumed to be large enough, allowing asymptotic development in terms of
the inverse Reynolds number. In this case, the equations of motion and stress are
reduced by expanding the flow field and the stress about the basic Poiseuille flow.
A classical boundary-layer analysis is applied to find the flow adjacent to the free
surface at which a boundary layer forms for moderate distances downstream from the
channel exit. The influence of this boundary layer is investigated using the method of
matched asymptotic expansions.

It is found that elastic or normal stress effects are most significant close to the
channel exit. Interestingly, the viscosity ratio, a, and the Deborah number, De, do not
appear separately in the case of flow field variables and free-surface expression but
rather appear as the group aDe. Given the presence of relatively high inertia, the jet
exhibits contraction for any Deborah number. However, elasticity tends to delay the
contraction further downstream from the channel exit. The straight portion of the
free surface of length x∗ in turn reflects the balance between inertial and elastic effects
very close to the channel exit. The length of the flat portion increases with elasticity.
Moreover, normal stress effect weakens the contraction of the jet. A downward trend
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of the slope of the free surface (at x = x∗) with elasticity is observed, reflecting again
the flattening effect of the jet profile with increasing normal stress. Comparison of the
transition length, x∗, and the free-surface slope at that position with measurements
based on gravity-driven flow (Liang et al. 1999) leads to good qualitative agreement
between the current theory and experiment. Closer or quantitative agreement is
not expected despite the similarity between pressure-driven and gravity-driven flows.
Numerical prediction of the boundary-layer thickness near the channel exit confirms
the ε3/2

√
aDe behaviour based on dimensional arguments.

In general, elastic effects appear to be mostly influential near the free surface at
which inertial effects are less dominant compared to the core region. The polymeric
shear stress, s, exhibits linear dependence on De, whereas the streamwise normal stress
component, q, varies quadratically with De; both have a maximum close to the free
surface. The transverse normal stress component, r, is strongest at the free surface
with a negative value and monotonically decreases to zero with height. All the stress
components decay rapidly with x outside the channel.

Inspection of the flow at the centreline reveals that Poiseuille conditions for velocity
and pressure are reached inside the channel at a distance about half the width of the
channel, whereas the primary normal stress difference relaxes to the Poiseuille level at
a distance about one width of the channel further upstream from the channel exit. A
sharp gain in primary normal stress difference is predicted as the flow traverses the
channel exit. A saturation effect of elasticity is observed for large De, suggesting that
the stress relaxes to the Newtonian level at a relatively short distance downstream
from the channel exit. The pressure relaxes to zero level at a distance about one
width of channel downstream from the channel exit, whereas the streamwise velocity
decreases linearly with x outside the channel, suggesting the overall flattening of
the velocity profile. A momentum balance between the flow far upstream and far
downstream of the channel exit reveals that the asymptotic contraction ratio of the
viscoelastic jet decreases with elasticity of the fluid. This turns out to be in reasonable
agreement with the results obtained close to the channel exit.

The scalings chosen are such that the jet Reynolds number is small and its Deborah
number is of order one. One might expect therefore that viscoelastic effects would
appear at the same order as viscous effects. However, because this is a shear-
dominated flow in the surface boundary layer, viscous effects come in first, meaning
that viscoelastic effects are secondary perturbations. This is of course helpful and
rather essential to the present analysis, at the risk of excluding the case of more
common interest in which the dominant balance is between elasticity and inertia.

In this regard, although most polymer processing applications occur essentially
in the absence of inertia, the current work is useful for high-speed processes, for
instance for fibre spinning (Donnelly & Weinberger 1975) and film casting (German
& Khayat 2008). More importantly, the fundamental significance of the current work
cannot be overstated. The matched asymptotic formulation clearly illustrates how the
stress or velocity gradient singularity at the channel exit can be effectively dealt with.
Despite the advent of powerful computational methodologies, the presence of this
singularity remains a major obstacle in any numerical scheme. Mesh refinement, for
instance, is one of the common tools used to achieve accuracy near the singularity.
Pasquali & Scriven (2002) examined the influence of mesh density on the singularity
for coating flow by interpolating the velocity gradient along the wall. They found that
the components of the velocity gradient display large overshoots and undershoots
in the proximity of the contact line, which become more pronounced as the mesh is
refined. More importantly, they state that ‘the large, rapidly varying components of
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the velocity gradient affect strongly the computation of the polymer conformation
near and at the contact line, severely limiting the maximum Weissenberg number at
which a physically meaningful solution can be computed’.

The current asymptotic technique circumvents this problem altogether, as a
similarity solution is available, which need not recognize the presence of the
singularity, similar to boundary-layer flow near the edge of a plate. The current
high-Reynolds-number flow naturally lends itself to similarity solution near the free
surface, with elastic effects entering as higher-order terms. The existence of a similarity
solution is essential. For highly elastic fluids, one can similarly seek an asymptotic
solution assuming the elasticity or Deborah number is large. In this case, however,
a similarity solution may or may not exist in the inner region, depending on the
constitutive model. Although one can easily adopt a spectral expansion (see Khayat
& Kim, 2006 and the references therein), the requirement of a boundary condition
at some x remains problematic, precluding the main advantage of the similarity
solution. On the other hand, a similarity solution is readily available for non-elastic
shear-thinning and shear-thickening fluids (Zhao & Khayat 2007) and possibly for
second-order fluids. For the upper-convected Maxwell model, which is closely related
to the Oldroyd-B model used in the current formulation, a similarity does exist
(Renardy 1997).

Finally, the current work is restricted to steady flow, and it is not at all obvious
how it can be extended to transient flow. The presence of elasticity is known to
cause flow instability, of oscillatory nature at large Deborah number. The interplay
between inertia and normal stress is also expected to be destabilizing. In this regard,
the current study constitutes an essential phase towards a full linear stability analysis,
as it provides the steady-state flow, the stability of which is to be analysed.
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